Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118670, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493849

RESUMO

The surfactant-enhanced bioremediation (SEBR) of organic-contaminated soil is a promising soil remediation technology, in which surfactants not only mobilize pollutants, but also alter the mobility of bacteria. However, the bacterial response and underlying mechanisms remain unclear. In this study, the effects and mechanisms of action of a selected nonionic surfactant (Tween 80) on Pseudomonas aeruginosa transport in soil and quartz sand were investigated. The results showed that bacterial migration in both quartz sand and soil was significantly enhanced with increasing Tween 80 concentration, and the greatest migration occurred at a critical micelle concentration (CMC) of 4 for quartz sand and 30 for soil, with increases of 185.2% and 27.3%, respectively. The experimental results and theoretical analysis indicated that Tween 80-facilitated bacterial migration could be mainly attributed to competition for soil/sand surface sorption sites between Tween 80 and bacteria. The prior sorption of Tween 80 onto sand/soil could diminish the available sorption sites for P. aeruginosa, resulting in significant decreases in deposition parameters (70.8% and 33.3% decrease in KD in sand and soil systems, respectively), thereby increasing bacterial transport. In the bacterial post-sorption scenario, the subsequent injection of Tween 80 washed out 69.8% of the bacteria retained in the quartz sand owing to the competition of Tween 80 with pre-sorbed bacteria, as compared with almost no bacteria being eluted by NaCl solution. Several machine learning models have been employed to predict Tween 80-faciliated bacterial transport. The results showed that back-propagation neural network (BPNN)-based machine learning could predict the transport of P. aeruginosa through quartz sand with Tween 80 in-sample (2 CMC) and out-of-sample (10 CMC) with errors of 0.79% and 3.77%, respectively. This study sheds light on the full understanding of SEBR from the viewpoint of degrader facilitation.

2.
Chemosphere ; 352: 141399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331263

RESUMO

Layered double hydroxides (LDHs) have been recognized to have great potential for the treatment of heavy metals in wastewater and soil through various mechanisms. Isomorphic substitution is an important mechanism for the sorption of heavy metal cations with LDH reconstruction and highly stable product formation. However, sorption performance, structure-related relationships, and, more importantly, stability are still poorly understood. In this study, a series of LDHs with different structures were synthesized to evaluate their cadmium (Cd) sorption performance and stability concerning the isomorphic substitution mechanism. Divalent cation types in the LDH lattice determined the Cd sorption capacity as well as the isomorphic substitution possibility, following the order of hydroxide solubility of divalent cations (MII): Ca2+>Mg2+>(Cd2+) > Ni2+>Zn2+. In addition, CaAl-LDH exhibited a super-high Cd sorption capacity of 625.0 mg g-1. Cd sorption by LDHs with different interlayer anion types and divalent/trivalent cation molar ratios varied due to crystallite size-related MII release through cation-exchange/isomorphic substitution. Coexisting cations (e.g., Zn2+, Ni2+, Mg2+) influence the sorption performance of MII-LDH mainly through isomorphic substitution mechanism, largely depending on the solubility of MII(OH)2 with a trend of stable product formation. Furthermore, Mg2.9Cd0.1AlCl-LDH was fabricated, and limited Cd dissolution without destruction of the LDH structure was observed under various conditions. For example, only 7.69%, 2.16% and 0.96% of Cd was released from as-prepared Mg2.9Cd0.1AlCl-LDH in NaCl solution (0.02 mol L-1, pH 5), soil extract, and soil matrix, respectively. The very low leaching of Cd from Cd-containing LDHs indicated the high stability of LDH-sorbed Cd via isomorphic substitution and feasible practical application in Cd sequestration in wastewater treatment and soil remediation.


Assuntos
Cádmio , Metais Pesados , Cátions Bivalentes , Cátions , Hidróxidos/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...